A covariant formalism of spin precession with respect to a reference congruence
نویسنده
چکیده
We derive an effectively three-dimensional relativistic spin precession formalism. The formalism is applicable to any spacetime where an arbitrary timelike reference congruence of worldlines is specified. We employ what we call a stopped spin vector which is the spin vector that we would get if we momentarily make a pure boost of the spin vector to stop it relative to the congruence. Starting from the Fermi transport equation for the standard spin vector we derive a corresponding transport equation for the stopped spin vector. Employing a spacetime transport equation for a vector along a worldline, corresponding to spatial parallel transport with respect to the congruence, we can write down a precession formula for a gyroscope relative to the local spatial geometry defined by the congruence. This general approach has already been pursued by Jantzen et. al. (see e.g. Jantzen, Carini and Bini 1997 Ann. Phys. 215 1), but the algebraic form of our respective expressions differ. We are also applying the formalism to a novel type of spatial parallel transport introduced in Jonsson (2006 Class. Quantum Grav. 23 1), as well as verifying the validity of the intuitive approach of a forthcoming paper (Jonsson 2007 Am. Journ. Phys. 75 463) where gyroscope precession is explained entirely as a double Thomas type of effect. We also present the resulting formalism in explicit three-dimensional form (using the boldface vector notation), and give examples of applications. PACS numbers: 04.20.-q, 95.30.Sf
منابع مشابه
Optical geometry across the horizon
In a companion paper (Jonsson andWestman 2006Class. Quantum Grav. 23 61), a generalization of optical geometry, assuming a non-shearing reference congruence, is discussed. Here we illustrate that this formalism can be applied to (a finite four-volume) of any spherically symmetric spacetime. In particular we apply the formalism, using a non-static reference congruence, to do optical geometry acr...
متن کاملInertial forces and the foundations of optical geometry
Assuming a general timelike congruence of worldlines as a reference frame, we derive a covariant general formalism of inertial forces in General Relativity. Inspired by the works of Abramowicz et. al. (see e.g. Abramowicz and Lasota 1997 Class. Quantum Grav. 14 A23-30), we also study conformal rescalings of spacetime and investigate how these affect the inertial force formalism. While many ways...
متن کاملThe Frenet Serret Description of Gyroscopic Precession
The phenomenon of gyroscopic precession is studied within the framework of Frenet-Serret formalism adapted to quasi-Killing trajectories. Its relation to the congruence vorticity is highlighted with particular reference to the irrotational congruence admitted by the stationary, axisymmetric spacetime. General precession formulae are obtained for circular orbits with arbitrary constant angular s...
متن کاملNONDYNAMICAL ANALYSIS OF SPIN AMPLITUDES IN PION-PROTON ELASTIC SCATTERING IN OPTIMAL FORMALISM AT 6.0 GeV/C
Optimal conditions are used in nondynamical formalism to diagonalize the pionproton reaction matrix as much as possible. Invariance laws are imposed to simplify the relationship between observables and bilinear combination of amplitudes. Transverse amplitudes are determined by using measured polarization parameter in xfp elastic scattering at 6.0 GeVIC
متن کاملComparison the Accuracy of Fetal Brain Extraction from T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE) MR Image with T2-True Fast Imaging with Steady State Free Precession (TRUFI) MR Image by Level Set Algorithm
Background Access to appropriate images of fetal brain can greatly assist to diagnose of probable abnormalities. The aim of this study was to compare the suitability of T2-True Fast Imaging with Steady State Free Precession (T2-TRUFI), and T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (T2- HASTE( magnetic resonance imaging (MRI) to extract the fetal brain using the level set algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008